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EXECUTIVE SUMMARY 

Non-recurrent freeway congestion has increased substantially to cause an adverse impact 

on traffic conditions in terms of excessive delays, queue backups, reduced safety, and 

increased air pollution.  Through the last three decades, numerous attempts have been 

made to reduce the effect of non-recurrent congestion by developing a reliable and 

efficient automatic incident detection system.  Most of the developed incident detection 

algorithms have not yet shown the anticipated level of success required for on-line 

implementation.  Therefore, the need for accurate, fast detection of incidents to facilitate 

quick response and immediate dispatch of emergency services is still pressing.  The 

automated detection of incidents on the freeways is essentially one of the primary 

components of a metropolitan infrastructure, which encompasses Advanced Traveler 

Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS). 

 

Most of the previously developed incident detection algorithms have had a limited 

success in their overall performance in terms of detection rate (DR) and false alarm rate 

(FAR).  The existing algorithms have limited ways of filtering the loop detector data and 

distinguishing incident conditions from incident-like conditions (recurrent congestion 

patterns).  In addition, they do require intensive calibration efforts to select the most 

appropriate threshold values.  Even after calibration the detection rate and the false alarm 

rate do not provide satisfactory results from the traffic operators' point of view.  High 

false alarm rates swamp the traffic operators and render the incident detection system 

unreliable. 

 

Unlike traditional incident detection algorithms that compare individual occupancy, 

speed or volume values at successive loop detector stations, pattern recognition models 

have the ability to learn how to recognize traffic patterns with certain characteristics.  

Recently Fuzzy ART (Adaptive Resonance Theory) has been introduced.  Fuzzy ART is 

a clustering algorithm that has the ability to map traffic patterns to a set of categories.  

Incident traffic patterns can be mapped to similar clusters according to their common 
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characteristics.  It has advantages over backpropagation networks in that they provide fast 

stable learning that is suitable for on-line implementation.  Fuzzy ART is a synthesis of 

Fuzzy Logic and ART networks. 

 

This report presents the results of training and testing the Fuzzy ART network for the 

application of automatic freeway incident detection.  The performance envelopes of the 

DR-FAR relationship were the basis for assessing the performance of the algorithm.  For 

performance improvement, a persistence period and a persistence factor were introduced 

to reduce the false alarm rate.  The effect of the persistence factor was not significant for 

values in the range between 1 and 4.  The performance was evaluated under a variety of 

scenarios to address the impact of some factors on the overall algorithm performance.  

Those factors included the vigilance parameter, the temporal pattern size, and the type of 

traffic parameter.  The results showed that the performance could be significantly 

improved with increasing the value of the vigilance parameter (ρ=0.95) and the temporal 

pattern size.  Also, results based on speed patterns outperformed those based on 

occupancy patterns.  However, the combination of occupancy and speed has resulted in 

the highest performance.  Comparative evaluation between the Fuzzy ART algorithm and 

California algorithms version 7 and 8 was presented. 
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1 INTRODUCTION 

The objectives of this research project are twofold: First, to improve the short-term traffic 

prediction model and conduct sensitivity analysis to investigate the effect of various 

factors on the prediction accuracy; and second, to develop a neural network model (Fuzzy 

ART) for the automated detection of incidents on I-4.  The tasks accomplished in each 

part are listed below: 

Volume I: Short-term traffic prediction on I-4 

1. Use Different decay factors such as half normal and exponential function to 

smooth detector data and improve on the performance of the existing off-line 

model. 

2. Use additional traffic variable, e.g., occupancy, in addition to speed, to see if the 

accuracy of the existing prediction model will be improved. 

3. Test the off-line prediction model using more incident-free days (recurring 

congestion) to examine the reliability of the prediction model and, most 

importantly, to avoid overestimation of traffic speed 

4. Implement the on-line real time traffic prediction model 

5. Evaluate the performance of the on-line prediction model 

Volume II: Incident detection on I-4 

1. Filter all the loop detector data and the incident database collected on the central 

corridor of I-4 in 1993 and 1994.  The filtering mechanism should be suitable for 

on-line implementation. 
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2. Collect a new set of incident and loop detector data on I-4 via the dial-up 

connection between UCF and FMC.  The new data will also be subject to 

filtering. 

3. Develop software to process the data and train the proposed ANN models.  The 

programming effort will be conducted in MS Visual Basic 6.0.  The development 

process involves debugging and testing the software. 

4. Split the data set into two subsets: one for training and the other for testing.   

5. Train the proposed ANN models using the training data subset. 

6. Evaluate the performance of the trained models using incident detection 

performance measures. 

7. Test the proposed models off-line using the testing data subset. 

8. Conduct the on-line testing of the new trained models by incorporating a new 

module into the existing on-line module. 
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2 INCIDENT DETECTION ON I-4 

2.1 INTRODUCTION 

Non-recurrent freeway congestion has increased substantially to cause an adverse impact 

on traffic conditions in terms of excessive delays, queue backups, reduced safety, and 

increased air pollution.  Through the last three decades, numerous attempts have been 

made to reduce the effect of non-recurrent congestion by developing a reliable and 

efficient automatic incident detection system.  Most of the developed incident detection 

algorithms have not yet shown the anticipated level of success required for on-line 

implementation.  Therefore, the need for accurate, fast detection of incidents to facilitate 

quick response and immediate dispatch of emergency services is still pressing.  The 

automated detection of incidents on the freeways is essentially one of the primary 

components of a metropolitan infrastructure, which encompasses Advanced Traveler 

Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS). 

 

Most of the previously developed incident detection algorithms have had a limited 

success in their overall performance in terms of detection rate (DR) and false alarm rate 

(FAR).  The existing algorithms have limited ways of filtering the loop detector data and 

distinguishing incident conditions from incident-like conditions (recurrent congestion 

patterns).  In addition, they do require intensive calibration efforts to select the most 

appropriate threshold values.  Even after calibration the detection rate and the false alarm 

rate do not provide satisfactory results from the traffic operators' point of view.  High 
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false alarm rates swamp the traffic operators and render the incident detection system 

unreliable. 

 

Unlike traditional incident detection algorithms that compare individual occupancy, 

speed or volume values at successive loop detector stations, pattern recognition models 

have the ability to learn how to recognize traffic patterns with certain characteristics.  

Recently Fuzzy ART (Adaptive Resonance Theory) has been introduced.  Fuzzy ART is 

a clustering algorithm that has the ability to map traffic patterns to a set of categories.  

Incident traffic patterns can be mapped to similar clusters according to their common 

characteristics.  It has advantages over backpropagation networks in that they provide fast 

stable learning that is suitable for on-line implementation.  Fuzzy ART is a synthesis of 

Fuzzy Logic and ART networks. 

2.2 DATA COLLECTION 

The process of data collection for incident detection analysis is divided into two phases.  

The first phase handles the collection of the loop detector data along the study corridor.  

The loop detector data is comprised of 30-second speed, lane occupancy, and traffic 

volume at each loop detector station.  The second phase involves the compilation of 

incident data with information on their location and time.  Each phase is described in 

greater detail in the following subsections. 
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2.2.1 Loop Detector Data 

This section provides a detailed description of the methodology used to collect and filter 

the loop detector data.  The occupancy, speed, and volume were collected every 30 

seconds with loop detectors spaced at 0.5 miles along the central corridor of I-4 in 1993 

and 1994.  The point measurements of the three parameters are used to portray the traffic 

conditions on the freeway.  Due to occasional loop detector failures or malfunctioning the 

data stream has to be examined and filtered to remove those abnormalities.  Also, the 

loop detector data is smoothed out using the moving time average to reduce the amount 

of random traffic fluctuations.  Both filtering and smoothing are suitable for on-line 

implementation. 

 

The purpose of this stage is to ensure that the necessary data fixes are made before the 

data is processed by the incident detection algorithms.  The data collection process was 

completed in two simultaneous phases.  The first phase involved collecting loop detector 

data of occupancy, volume, and speed every 30 seconds.  The second phase involved 

compiling as many incidents on the study section of I-4 as possible from all possible 

sources during the same time period the loop detector data was collected.  The second 

phase is explained in a separate section later in this report.  The integrated loop and 

incident databases are used to satisfy the input requirements of the proposed artificial 

neural networks. 
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Due to the temporary loop detector failures on site it is likely to find occasional 

discontinuities in the data stream, which could be reduced by applying a simplified data 

filtering technique.  This is to ensure that the traffic patterns generated from the loop 

detector data represent, as much as possible, the real traffic conditions on the study 

section.  In addition, the loop detector data will be smoothed out using the moving 

average technique. 

2.2.1.1 Study Site 

The freeway section selected for this study was the central corridor of I-4 in both 

directions within the jurisdiction of Orange County, Florida.  The I-4 central corridor is 

the most congested section during peak periods since it connects the urban areas to the 

downtown area of the city of Orlando and extends to reach the tourists' attraction areas.  

Therefore, the corridor is heavily traveled by both commuters and tourists.  The study 

section is nearly 11.2 miles long and extends from Maitland Blvd. to John Young Pkwy 

in both directions.  Figure 1 shows a map of the study section of I-4. 

 

The central corridor is covered with loop detectors spaced out at almost 0.5 miles in both 

directions.  Each lane has dual loop detectors that allow for speed measurements.  The 

collection of all loop detectors at one particular location in both directions is referred to 

as a loop detector station.  Each station is wired to a 170-type controller that collects all 

the traffic data from the loop detectors and transmits them to the Freeway Management 

Center (FMC).  The study section has a total of 25 stations, out of which only 24 are 

productive.  Stations are numbered from 530 to 554 in the extended I-4 surveillance 

system.  One middle station (539) serves as a master hub and does not collect any traffic 
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data.  The configuration of a typical loop detector station is shown in Figure 2.  Location 

of loop detector stations by milepost is shown in Table 1. 
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Figure 1: Map of I-4 showing the study section 
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Figure 2: Configuration of a loop detector station 

Table 1: Location of loop detector stations on the central corridor of I-4 

Detector 
Station* 

Eastbound 
Milepost 

Eastbound 
Station 

Westbound 
Milepost 

Westbound 
Station 

530 79.14 1+00 79.14 1+00 
531 79.63 27+00 79.63 27+00 
532 80.16 55+00 80.16 55+00 
533 80.63 80+00 80.44 70+00 
534 81.06 102+50 81.04 101+50 
535 81.51 126+00 81.51 126+00 
536 82.03 153+25 82.03 153+25 
537 82.53 179+50 82.53 179+50 
538 82.90 178+75 82.90 178+75 
540 83.43 266+75 83.43 266+75 
541 83.92 252+75 83.92 252+75 
542 84.47 281+50 84.47 281+50 
543 84.93 306+00 84.93 306+00 
544 85.42 332+00 85.42 332+00 
545 85.92 358+50 85.92 358+50 
546 86.48 388+00 86.48 388+50 
547 86.90 410+00 86.90 410+00 
548 87.34 433+00 87.34 433+00 
549 87.84 459+15 87.84 459+50 
550 88.25 481+00 88.25 481+00 
551 88.70 504+50 88.70 504+50 
552 89.24 533+00 89.24 533+00 
553 89.59 551+50 89.59 551+50 
554 90.16 581+60 90.16 581+60 

* Station 539 serves as a master hub and does not report any data 
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Each station reports measurements of three traffic parameters: volume, occupancy, and 

speed.  The dual loops at each lane permit speed measurements by dividing the distance 

between the two loops over the time difference between the actuation of the upstream and 

downstream loops.  The current system supports data resolution of 30 seconds.  In other 

words, speed and occupancy data are averaged at 30-second intervals.  Volume data are 

the 30-second vehicle counts accumulated at the end of each period.  The three traffic 

parameters constitute the input to the proposed artificial neural network models. 

2.2.1.2 Loop Detector Data Collection 

The loop detector database contained a total of 376 days worth of 30-second occupancy, 

volume, and speed data.  The data was collected in 1993 and 1994 in real time by a VAX 

3300 computer with VMS operating system.  At the end of each day the data was 

collected and dumped to a permanent file.  The continuous data stream from the loop 

detector stations was the basis for generating the traffic patterns used in this study. 

 

Due to the occasional loop detector failures and malfunctioning, the 30-second data 

stream may contain erroneous or missing data that causes discontinuity in the data 

stream.  This discontinuity prohibits the generation of traffic patterns that represent the 

actual traffic conditions on the study section.  Therefore, a simplified data filtering 

method is developed to fix the occurrences of such abnormalities.  The filtering process is 

carried out at a preprocessing stage that involves substituting erroneous or missing loop 

data with data from adjacent operational loops, whenever possible. 
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2.2.1.3 Methodology of the Data Manipulation Process 

This section explains the methodology for constructing the training and testing data sets 

required for the proposed artificial neural network model.  The methodology, as shown in 

Figure 3, starts off with the extraction of loop detector data for the time periods when the 

incidents were reported.  This process was completed using LOVATS (Loop Output 

Verification and Testing Software), which was developed at the Transportation Systems 

Institute at the University of Central Florida in 1995 (see Al-Deek et al., 1995a, 1995b, 

and 1996).  The extraction process was necessary to convert the loop detector data files 

from its original binary format to ASCII format.  The next step was to split the loop 

detector data files by each of the three traffic parameters: volume, occupancy, and speed.  

Data for each parameter will be filtered and smoothed out to account for temporary loop 

failures and to reduce short-term traffic fluctuations.  The filtering and smoothing 

processes are explained in the next section. 
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Extract Loop Detector
Data using LOVATS

Split 30-Second Data by Volume,
Occupancy, and Speed

Loop Detector Data

Volume Occupancy Speed

Filter Loop Detector Data

Smooth Loop Detector Data

Plot Speed and Occupancy
Profiles before and after Incident

Incident Data

Select Incident Data Set

Verify each Incident (Time and Location)

Split Incident Data Set

Training Testing

Generate Traffic Patterns

Train and Test ANNs  

Figure 3: Methodology of the data manipulation process 
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2.2.1.4 Filtering and Smoothing Loop Detector Data 

Due to occasional malfunctioning and failures in loop detectors it is likely to encounter 

missing or invalid measurements in the 30-second data stream.  Thorough examination of 

the loop detector data has revealed the occurrences of zero, -xx, and -9xx values in the 

data stream.  Depending on the type of loop detector failure these abnormal values may 

last from one 30-second period to several minutes or hours.  Petty K. et al. (1995) showed 

a correction procedure that was developed in the Freeway Service Patrol (FSP) project 

and built in support software developed under UNIX platform.  The correction procedure 

was based on the assumption that the calculated delay on the freeway section should be 

the same if the defective loop were not there in the first place.  This procedure was 

devised to serve the purpose of the study. 

 

In this study a simplified filtering scheme is proposed to fix the loop data before 

generating the training and testing traffic patterns.  The filtering procedure is based on 

copying data from upstream or downstream loop detectors and averaging data from 

adjacent loop detectors.  The filtering procedure is coded in MS Visual Basic and 

described in the following subsections. 

 

2.2.1.4.1 Filtering Occupancy and Volume Data 

The filtering process involves two steps.  The first step replaces the incorrect loop 

detector measurement with the one observed at the upstream or downstream loop at the 

same lane.  This step is sufficient when only one of the dual loops is down.  At this step 

the missing or erroneous loop data is replaced with the data from the other operational 



 14

loop detector at the same lane.  If both dual loops are down, filtering resumes by applying 

step 2.  At step 2 the missing or misreported lane data is estimated from the average of 

the other two adjacent lanes, if they are both operational.  If one of the two adjacent lanes 

is down, the data from the other lane is used.  When the two adjacent lanes are down, the 

entire station is considered non-operational and cannot be used for representation of 

traffic patterns. 

 

Based on observation of the loop detector data, all –xx occurrences in the data stream are 

valid measurements when the negative sign is simply dropped.  Therefore, all detector 

data was screened first to remove the negative sign from all –xx encounters.  This is 

followed by filtering 0 and –9xx observations as follows: 

 

Let t
kjiX ,,  denote the occupancy or volume measured at time period t, station i, lane j, and 

loop k, as shown in Figure 4. 
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Figure 4: Schematic diagram of loop detector stations 
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2.2.1.4.2 Filtering Speed Data 

Filtering speed data is similar to occupancy and volume data except that speed 

measurements are generated from dual loops, and therefore, each lane reports only one 

speed value every 30 seconds.  Hence, the filtering process is completed using step 2 

only, where the missing lane speed data is estimated from the average of the other two 

adjacent lanes, if they are both operational.  Similarly, if one of the two adjacent lanes is 

not operational, the data from the operational lane is used.  When the two adjacent lanes 

are down, then the entire station is considered non-operational and cannot be used for 

representation of traffic patterns.  The filtering steps are explained as follows: 

 

Let t
jiX ,  denote the speed measured at time period t, station i, and lane j. 

Step 1: If t
jiX ,  = 0 or –9xx then, 
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2.2.1.5 Smoothing Loop Detector Data 

To reduce noise and short-term traffic fluctuations the loop detector data is smoothed out 

using the moving average technique.  The smoothing time window is carefully selected as 

two minutes.  Although wider smoothing time windows are more likely to further reduce 

the random noise in the traffic pattern, the effect of smoothing can be detrimental to the 

mean time to detect an incident.  For instance, if an incident happens at time t, its effect 

on the moving averaged patterns will be smoothed out with the prior non-incident 

conditions until time t+∆t, where ∆t denotes the smoothing time window. 

 

Let t
jiY ,  denote the smoothed value of occupancy, volume, or speed at time period t, lane 

j, and station i.  The smoothing time period is two minutes, which is equivalent to 4 

consecutive 30-second periods. 
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2.2.1.6 A New Set of Loop Detector Data 

This task involves collecting a new set of loop detector data and incident data on I-4 via 

the software developed by the transportation research team at UCF within the context of 
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the project titled "On-line testing of incident detection algorithms", sponsored by the 

FDOT.  When running on-line, the program continuously downloads 30-second data of 

speed, volume and occupancy via the dial-up connection between UCF and FMC.  The 

program has been running incessantly since September 1997 for 24 hours a day, 7 days a 

week.  The loop detector data was compiled every day in a separate text file.  The 

compiled text files were stored on CDs and then converted to database access format 

(mdb) to provide fast and easy access though the new on-line software. 

2.2.1.7 Data Conversion Process 

The data conversion process was completed as a part of the online incident detection and 

traffic prediction module developed in this project.  The initial design of the program 

interface is shown in Figure 5.  The figure shows the main menus of the program.  The 

main features currently available are: 

 

1. Conversion of the data text files to MS Access database format (mdb). 

2. Querying the mdb database files to extract the information requested by the user. 
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Figure 5: Snapshot of the main menu 

2.2.1.7.1 Conversion of text files to database files 

The purpose of this feature is to convert the text files compiled by the on-line incident 

detection program to more efficiently accessible database files.  As mentioned 

previously, the 30-second data is collected from I-4 and compiled on a daily basis in 

ASCII files.  Although the text files can be opened with any text editor under windows 

(e.g. Wordpad), it is very time consuming to attempt to access any particular information 

within the file.  To make use of the efficient and fast database engines, the text files were 

converted to database files.  Access to particular records in the database can be easily and 

quickly achieved through querying the database tables using SQL (Structured Query 

Language) statements.  The database files are grouped by month and stored on CDs to 

provide portability.  In other words, each database file contains all the loop detector data 

collected within a particular month.  Figure 6 shows a snapshot of the data conversion 

process while converting data for the month of June '98. 
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Figure 6: Snapshot of the data conversion process 

2.2.1.7.2 Querying the database files 

Upon conversion of loop data from text to database format, the user can now query the 

database to check the traffic information at any location along the I-4 corridor and for any 

specific time period.  In order to query the loop detector database, the user must open one 

of the database files under 'File' menu.  Then, the 'Loop Data' menu will be activated to 

allow the user to select 'Query'.  As the user selects 'Query' the program will establish a 

connection with the database file for a few seconds until the 'Querying Loop Database' 

window appears as shown in Figure 7.  The figure shows the available days in the 

selected database file that the user has just opened.  The user can select one or more of 

the available days using the selection buttons.  When done, the user can move forward by 

clicking on 'Next'. 
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Figure 7: Snapshot of the 'Querying Loop Database' dialog window showing selection of 
days 

The next tab allows the user to select the time period to query the database within as 

shown in Figure 8.  In the figure, the user is assumed to have selected the time period 

from 6:00:00 AM to 10:00:00 AM.  After the selection of the time period, the user can 

move forward by clicking 'Next'. 
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Figure 8: Snapshot of the 'Querying Loop Database' dialog window showing selection of 
time period 

The next tab, shown in Figure 9, allows the user to select one of more of the loop detector 

stations along the I-4 corridor.  The user must also select at least one direction and one 

lane.  If more than one lane has been selected, the user will also have the option to check 

the 'average' checkbox, which calculates the average of the selected lanes.  In this 

example, the user has selected to view the loop data for each of the three lanes in the 

eastbound direction, as well as the average of all three lanes.  Clicking on 'Next' will take 

the user to the following tab. 
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Figure 9: Snapshot of the 'Querying Loop Database' dialog window showing selection of 
stations, direction, and lanes 

 

The next tab, shown in Figure 10, gives the user the option to choose one or more of the 

available traffic parameters namely, speed, volume, and occupancy.  All three have been 

checked in this example.  Again, clicking on 'Next' will take the user to the last tab of the 

query input parameters.  The last tab is shown in Figure 11 and allows the user to either 

list the loop detector data every 30 seconds (the default) by checking the 'No Grouping' 

checkbox or group the query results by date, time, or both.  Grouping the data by date 

only will result in the average of the selected traffic parameters over the entire selected 

time period for each selected station and for each selected day.  Grouping the data by 

time only requires the user to choose the time interval over which the data will be 

averaged.  This results in the averages of the selected traffic parameters over each time 

interval (say 5 minutes) and over all the selected days for each selected station.  In this 
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example, we selected to group the data by time using 5 min time intervals.  The user can 

also group the data by day and time.  In this case, the results will be shown for each 

selected day independently. 

 

Throughout the query input process, the user can go back and forth between the query 

tabs using the 'Back' and 'Next' button.  When done, the user can start the querying 

process by clicking on 'Finish'.  The querying process may take a few seconds until the 

results are displayed as shown in Figure 12.  The query results are shown in a database 

grid format. 

 

 

Figure 10: Snapshot of the 'Querying Loop Database' dialog window showing selection 
of traffic parameters 
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Figure 11: Snapshot of the 'Querying Loop Database' dialog window showing selection 
of grouping variables 

 

Figure 12: Snapshot of the query results 



 26

2.2.2 Incident Data 

2.2.2.1 The 1993 and 1994 Incident Data Set 

Similar to the treatment of loop detector data, the collected incidents were screened first 

to eliminate any duplication in incident records.  In this report we also present the 

common characteristics of incidents on the study section of I-4.  The characteristics of 

training and testing incident data sets are also compared to those of the entire incident 

database.  It should be noted here that the proposed artificial neural network models are 

developed only for lane blocking incidents due to their perceived impact on the freeway 

capacity and the subsequently excessive delays to the motorists. 

2.2.2.1.1 Incident Data Collection 

Incident data was collected from logs compiled by the Freeway Management Center 

(FMC), Florida Highway Patrol (FHP), Orlando Police Department (OPD), and Maitland 

Police Department (MPD).  The incident information provided by the FMC was collected 

by the traffic operator and based on surveillance observations using CCTV cameras.   

 

The first data collection period started January 19th, 1993 through August 27th, 1994.  The 

total number of incidents compiled from all sources was 1217.  The distribution of 

incidents that occurred within the central corridor of I-4 with respect to each data source 

is shown in Figure 13.  The majority of the incidents (83%) were compiled from the 

Orlando Police Department (OPD) reports and citations.  The number of incidents 

collected by the traffic operator at FMC accounted for 10% of the entire database.  A 
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small proportion of incidents were also collected from the FHP citations (6%) and 

Maitland Police Department (MPD) (1%). 

FHP
6%

MPD
1%

OPD
83%

Surveillance
10%

 

Figure 13: Distribution of incidents by data source 

All incidents were classified as either lane blocking or non lane-blocking.  Lane-blocking 

incidents include those that resulted in closing at least one lane of I-4.  The proportions of 

lane blocking and non lane-blocking incidents for each direction of I-4 are shown in 

Figure 14.  The figure shows that the proportion of non lane-blocking incidents slightly 

exceeds that of lane blocking incidents for each and both directions of I-4.  Lane blocking 

incidents accounted for 45% of all incidents.  Bearing in mind that lane-blocking 

incidents cause significant reduction in the freeway capacity, the high percentage of this 

incident type would substantially increase the amount of non-recurring congestion on I-4.  

The directional distribution of lane blocking incidents shows that the proportion of 

incidents in the eastbound direction is slightly higher than the westbound direction.  No 

difference between the two directions was exhibited for non lane-blocking incidents.  The 

overall proportion of both types does not show a significant difference between both 

directions. 
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Figure 14: Distribution of incidents by incident type and direction of traffic 

Because of the adverse impact of lane-blocking incidents on traffic conditions this 

research project attempts to improve the performance of lane blocking incident detection 

algorithms.  Non lane-blocking incidents do not usually cause perceivable impact on the 

traffic conditions, and therefore, are much harder to detect automatically.  Before 

selecting the incident data set, some of the relevant characteristics of lane blocking 

incidents are demonstrated next. 

2.2.2.1.2 Filtering the Incident Data Set 

This section provides a detailed description of the methodology used to collect and filter 

the incident data set.  The characteristics of the incidents are exhibited in terms of the 

effect of incident type, location, time, and direction of travel on the distribution of 

incidents on I-4.  All incidents were filtered using the associated speed and occupancy 



 29

profiles to validate their time and location.  The total incident data set that was used in 

training and testing the Fuzzy ART model was narrowed down to 130 lane-blocking 

incidents.  This set was further split into two subsets with the ratio of 2:1 for training and 

testing, respectively.  Again, the characteristics of the selected incident data set were 

examined to ensure that they are representative of the entire data set. 

 

Due to possible errors or inaccuracies in the data sources each lane-blocking incident was 

verified independently.  The verification process involved plotting the speed and 

occupancy profiles at the time of the incident and observing the effect of the incident on 

the upstream and downstream stations.  Verification required seeking enough evidence 

that the upstream and downstream stations have perceived the effect of the incident.  In 

other words, an incident is verified if there was a drop in occupancy at the downstream 

station, associated with an increase in occupancy at the upstream station, or an increase in 

speed at the downstream station, associated with a drop in speed at the upstream station.  

The screening criterion was based only on visual observations of the effect of the incident 

on the occupancy and speed profiles.  The screening process has two objectives.  The first 

objective is to disqualify all incidents that were classified as lane blocking but did not 

show any perceived effect on the traffic conditions at the time and location reported by 

the incident data source.  The second objective is to visually verify the time and location 

of each incident.  In most cases, the reported incident time was a few minutes after the 

actual incident time.  Determination of the actual incident time was based on observing 

sudden significant change in occupancy and speed between upstream and downstream 

stations. 
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For illustration we present an example of one of the lane blocking incidents in Figure 15.  

The figure shows the occupancy patterns before and after the reported incident time.  

This incident was reported between station 15 and station 14 on the westbound direction 

of I-4, where station numbering decreases in the direction of travel.  The figure shows 

that occupancy at the upstream station (15) increases from 12% to 25% after the incident 

occurred.  Meanwhile, the occupancy at the downstream station (14) slightly dropped to 

nearly 7%.  It should be noted that while the incident was reported at time period 48 from 

the beginning of the profile, the figure indicates that the change in occupancy patterns 

started earlier at time period 36.  This indicates that the reported incident time was nearly 

6 minutes past the actual incident time.  This bias was observed in most of the examined 

incident profiles, and therefore, screening each individual incident profile was deemed 

necessary.  Likewise, speed patterns, as shown in Figure 16, exhibit a sudden drop in 

speed at the upstream station (15) after the incident occurred, while maintaining high 

speed at the downstream station (14).  Both occupancy and speed profiles were used to 

verify each individual incident case in the incident database. 
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Figure 15: Occupancy patterns in the vicinity of the incident location 
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Figure 16: Speed patterns in the vicinity of the incident location 
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Not only was the verification process necessary to check the incident information 

gathered from the data sources but also to verify the quality of the loop detector data at 

the time and location of the incident.  In a few circumstances occupancy and speed 

patterns were not available at the incident time and location because of a complete failure 

in the upstream and downstream loop detectors.  In such situations the effect of the 

incident on traffic patterns was not available and the corresponding incident had to be 

discarded from the study.  At the end of the verification process the incident database was 

narrowed down to a total of 130 lane-blocking incidents.  The resulting data set was 

randomly split up into subsets, one for training and the other for testing.  The ratio 

between the size of the training and testing data sets was arbitrarily selected as 2:1.  In the 

next section we highlight some of the characteristics of the selected incident data set. 

 

2.2.2.1.3 Lane-Blocking Incident Characteristics 

One of the other important incident characteristics is the distribution of incidents by time 

of day for each direction.  Figure 17 clearly shows the high frequency of incidents in the 

afternoon peak period (from 3:00 to 6:00 PM).  The eastbound lane-blocking incident 

frequency is higher than the westbound frequency in the afternoon peak period.  

Observation of the directional peaking characteristics on I-4 has revealed that the peaking 

conditions prevail in the eastbound direction in the evening and the westbound direction 

in the morning.  This is illustrated in Figure 18 that shows the proportion of incidents 

during peak and off-peak periods for each direction.  The overall proportion of incidents 

observed during morning (6:00 AM to 9:00 AM) and evening (3:00 PM to 6:00 PM) peak 

periods constituted 58% of all incidents.  The high occurrence of lane blocking incidents 
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is expected during peak periods due to the high traffic demand and the subsequent 

recurring congested conditions.  The adverse impact of an incident on the traffic 

conditions, coupled with the existing recurring congestion, then becomes worsened.  Fast 

and reliable detection and clearance of such incidents will alleviate the unduly delays and 

congestion at such times. 
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Figure 17: Temporal distribution of lane blocking incidents by direction of traffic 
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Figure 18: Peaking characteristics of lane blocking incidents 

 

Similarly, the spatial distribution of lane blocking incidents for each direction is shown in 

Figure 19.  The figure shows the proportion of incidents at each loop detector station to 

reveal high frequency areas of I-4.  High frequency is observed at certain locations such 

as the vicinity of Rio Grande and Winter Park interchanges.  Locations in the vicinity of 

the downtown of Orlando are also characterized with high incident frequency, most likely 

due to the high maneuvering activities at merging and diverging points near on- and off-

ramps. 
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Figure 19: Spatial distribution of lane blocking incidents by direction of traffic 

2.2.2.1.4 Characteristics of the Selected Incident Set 

The distribution of the lane-blocking incidents for the verified incident data set by the 

data source is shown in Figure 20.  The proportion of verified incidents that were 

collected by FHP and MPD is similar to that of the entire data set.  However, the 

proportion of surveillance incidents increased from 10% of all lane-blocking incidents in 

the original data set (450 incidents) to 25% of the lane-blocking incidents in the verified 

data set.  This was accompanied by a decrease in the proportion of incidents collected by 

OPD from 83% to 67%.  Such observation leads to the conclusion that surveillance data 

quality was the most accurate and reliable among all other sources.  On the contrary, the 

largest proportion of incidents removed from the original database was compiled by 

OPD, leading to the conclusion that OPD was the least accurate source. 
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Figure 20: Distribution of the verified lane blocking incidents by data source 

 

In this section we present the temporal distribution of the verified incident data set, as 

well as the two subsets used for training and testing.  The distribution of the verified 

incident data set, shown in Figure 21, appears to be similar to that of the original incident 

database, except for the morning peak that shows a higher proportion of incidents.  The 

proportion during the evening peak period remains to be dominant.  This suggests that the 

selected incident data set is a representative sample of the original data set. 
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Figure 21: Temporal distribution of the verified lane blocking incidents 

2.2.2.2 The New Incident Data Set 

A new set of incidents was collected from Orlando Police Department, Maitland Police 

Department, Florida Highway Patrol, and Highway Helpers.  The new incident set was 

collected for the period from September '97 to September '98 and was processed to 

extract the necessary information from the accident reports.  The total number of 

incidents collected on I-4 for this period was 4946.  A sample of the incident set is shown 

in Figure 22. 
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DATE ID SOURCE LOCATION Direction TYPE TM RPT DISPAT ARRIVAL COMPLT DISPOSITION US STATION
9/15/97 9700337844 OPD ROBINSON WBO ACC W/BLOCK 17:50 18:39 18:39 18:39 40
9/15/97 9700337387 OPD PRINCETON WBO ACC 10:34 10:42 10:55 12:13 CR 44
9/15/97 9700337224 OPD ANDERSON EBO ACC 7:45 7:49 8:17 8:17 T 37
9/15/97 9700337846 OPD COLONIAL WBO ACC W/BLOCK 17:51 17:58 18:06 18:34 T 41
9/15/97 9700337855 OPD JOHN YOUNG EBO ACC W/BLOCK 18:03 18:03 18:13 19:32 B 29
9/15/97 9700337235 OPD KIRKMAN EBO ACC 7:57 7:59 8:15 8:31 J 23
9/15/97 97285866407 FHP I4 EBO AT MM 89 EBO ACC 16:54 52
9/15/97 97285868007 FHP I4 WBO & SR600 WBO OBSTRUCTION 18:45 52
9/15/97 97285866107 FHP I4 EBO & FAIRBANKS EBO ACC W/BLOCK 16:38 46
9/15/97 97285857507 FHP I4 EBO W OF KIRKMAN EBO ACC 8:30 23
9/15/97 97285865507 FHP I4 EBO & LEE RD EBO ACC 16:26 48
9/15/97 97285867607 FHP I4 & PAR ACC 18:09 45
9/17/97 9700340324 OPD IVANHOE EBO ACC 16:01 16:02 16:15 17:51 T 41
9/17/97 9700339841 OPD JOHN YOUNG EBO ACC W/INJ 7:56 7:56 8:06 13:57 B 29
9/17/97 9700339881 OPD JOHN YOUNG EBO ACC W/BLOCK 8:38 8:46 9:25 9:25 CR 29
9/17/97 9700340331 OPD COLONIAL EBO ACC W/INJ 16:04 16:15 16:15 16:15 40
9/17/97 9700339876 OPD JOHN YOUNG EBO ACC 8:33 8:33 8:33 9:34 T 29
9/17/97 9700339863 OPD KIRKMAN WBO ACC 8:16 8:17 8:17 8:17 24
9/17/97 9700340462 OPD IVANHOE EBO ACC W/BLOCK 18:03 18:21 18:37 19:54 T 41
9/17/97 9700340087 OPD CENTRAL EBO HIT & RUN 12:40 12:40 12:40 14:45 B 38
9/17/97 97285887707 FHP I4 WBO W OF SAND LAKE WBO DAV 7:03 21
9/17/97 97285894707 FHP I4 EBO AT ENT TO SR 535 EBO OBSTRUCTION 15:00 9
9/17/97 97285898907 FHP I4 EBO & IVANHOE EBO ACC 18:10 41
9/18/97 9700341777 OPD 1/2 MI. WEST OF S. ORANGE BLOSSOM EBO ACC W/BLOCK 16:56 16:56 17:07 18:57 T 31
9/18/97 9700341667 OPD 100 FT. EAST OF IVANHOE EBO ACC W/BLOCK 15:29 15:35 15:51 16:29 T 41
9/18/97 9700341425 OPD KALEY WBO DAV 12:06 12:06 12:06 12:48 JB 37
9/18/97 97341809 OPD 500 FT. WEST OF SR408 (E-W EXPRWY) EBO HIT&RUN 17:28 17:36 17:45 37
9/18/97 97341678 OPD 1/4 MI. WEST OF E. KALEY EBO HIT&RUN 15:30 15:38 15:57 35
9/18/97 9700341778 OPD ORANGE BLOSSOM EBO ACC W/BLOCK 16:56 16:56 16:56 16:56 31
9/18/97 9700341808 OPD SOUTH EBO ACC 17:27 17:30 17:30 17:30 38
9/18/97 9700341810 OPD PRINCETON WBO ACC W/BLOCK 17:29 17:30 17:47 17:47 JB 44
9/18/97 9700341849 OPD 300 FT. WEST OF PAR WBO ACC 17:30 17:42 17:52 19:35 T 46
9/18/97 9700341818 OPD 3/4 MI. WEST OF IVANHOE EBO ACC W/BLOCK 17:32 17:36 18:11 19:31 T 41
9/18/97 9700341847 OPD PRINCETON WBO ACC 17:51 17:57 17:57 17:57 44
9/18/97 9700341835 OPD GORE WBO ACC W/BLOCK 17:41 18:19 18:23 18:40 C 35
9/18/97 9700341807 OPD SOUTH (STREET) WBO ACC 17:27 17:59 17:59 17:59 38
9/18/97 97285903707 FHP I4 & SR 536 ABAND. VEH. 8:08 8
9/18/97 97285907307 FHP I4 WBO & SR 50 WBO ACC 15:16 41
9/18/97 97285903507 FHP I4 WBO & SR 536 WBO ABAND. VEH. 8:03 8
9/18/97 97285904807 FHP I4 WBO OFF RAMP TO SR 535 WBO ACC 10:26 11
9/18/97 97285902707 FHP I4 EBO & EXIT 29 EBO ACC 6:44 19
9/18/97 9700341809 OPD ANDERSON EBO ACC W/BLOCK 17:28 17:36 17:45 19:27 B 37
9/18/97 9700341680 OPD COLONIAL EBO ACC 15:37 15:37 15:37 15:53 C 40
9/18/97 97285906807 FHP I4 WBO EXIT RAMP TO LEE RD WBO ACC 15:02 49
9/18/97 97285909407 FHP I4 EBO E OF SR 535 EBO DAV 16:47 10
9/19/97 9700343100 OPD KIRKMAN WBO ACC W/INJ 15:19 15:25 15:25 15:25 24
9/19/97 97343391 OPD 1/2 MI. WEST OF OBT EBO HIT&RUN 18:00 18:05 18:19 32
9/19/97 97281351817 FHP I4 WBO W OF SR 434 IN MEDIAN WBO DAV 15:08 60
9/19/97 9700343195 OPD PRINCETON EBO ACC 16:30 16:30 16:35 16:35 JB 43
9/19/97 97343393 OPD 6200 INTERNATIONAL DR. EBO ACC 18:30 19:20 19:30 21
9/19/97 9700343132 OPD JOHN YOUNG EBO ACC 15:45 15:45 15:45 16:05 C 29
9/19/97 9700343125 OPD 1/2 MI. WEST OF SR500 EBO ACC 15:38 15:43 15:56 16:58 B 29
9/19/97 9700343193 OPD PRINCETON WBO ACC W/INJ 16:29 16:30 16:39 16:39 JB 44
9/19/97 9700343165 OPD ORANGE BLOSSOM EBO ACC W/BLOCK 16:11 16:14 16:16 16:16 JB 32
9/19/97 97285919507 FHP I4 & SR 528 ABAND. VEH. 10:10 17
9/19/97 97285919607 FHP I4 & SR 528 IN MEDIAN ABAND. VEH. 10:29 17
9/19/97 97285918107 FHP I4 & CENTRAL FL PKWY ABAND. VEH. 8:14 15
9/19/97 97285919407 FHP I4 & CENTRAL FL PKWY ABAND. VEH. 10:04 15
9/19/97 97285920407 FHP I4 & SR 91 FIRE 11:18 25
9/19/97 97285919207 FHP I4 WBO & SR 536 WBO ABAND. VEH. 9:45 8
9/19/97 97285921707 FHP I4 EBO & SR 408 EBO OBSTRUCTION 13:26 37
9/19/97 97285929907 FHP I4 & KALEY HIT & RUN 18:01 36
9/19/97 97285917907 FHP I4 WBO W OF 482 WBO DAV 8:04 20
9/19/97 97285927107 FHP I4 WBO & PRINCETON WBO ACC 16:51 44
9/22/97 9700347058 OPD EW EBO EBO ACC W/BLOCK 18:02 18:22 18:32 18:32 JB 37
9/22/97 9700346974 OPD KALEY EBO DAV 16:30 16:34 16:46 16:51 JB 36
9/22/97 97347088 OPD SR408 EXIT RAMP ACC 18:15 18:22 18:22 37
9/22/97 9700347004 OPD 50 FT. SOUTH OF ANDERSON EXIT WBO ACC 17:01 17:30 17:38 18:56 B 39
9/22/97 97285971107 FHP I4 & SR 535 ABAND. VEH. 10:00 10  

Figure 22: A sample of the incident data set collected in 1997/1998 on I-4 

The figure shows the information collected on each incident as follows: 

 

DATE: The date of the incident 

ID: A unique incident identification number 

SOURCE: The source of the incident report: FHP, OPD, or MPD 
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LOCATION: A description of the incident location in terms of the nearest interchange. 

DIRECTION: The direction in which the incident happened (EB or WB) 

TYPE: The incidents were classified according to the reports into one of the following 

types: 

Accident 

Abandoned vehicle 

Disabled Vehicle 

Hit and Run 

Obstruction 

Others: such as fire, etc. 

TM RPT: The time the incident was reported 

DISPAT: The time the emergency vehicles were dispatched. 

ARRIVAL: The time the assistance arrived at the incident scene 

COMPLT: The time the incident was removed from the freeway 

DISPOSITION:  The following explains the abbreviations adopted in this field 

For MPD data 

SF short accident form 

LF long " 

IR incident report 

NR no report 

GOA gone on arrival 

TOT turned over to another agency 

UNF unfounded 

TOW towed 

AR arrest 

For OPD data 

CR accident report 

J turned over to another agency (no report) 
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JB turned over to another agency (report filed) 

BB incident cancelled and no report filed 

DUP duplicate call for the same incident 

US STATION: The nearest upstream station number. 

 

The new incident data set was examined to reveal the common characteristics of the 

incidents on I-4 collected from OPD, MPD and FHP.  Figure 23 shows the distribution of 

all incidents collected on the study section of I-4 by the source of information.  The 

majority of incidents were collected from the incident reports obtained from OPD, 

totaling 65% of all incidents, followed by 34% from FHP and 1% from MPD.  The 

spatial distribution of all incidents by source is also depicted in Figure 24. 

 

Another important characteristic of the incident data set is the distribution of incidents by 

type.  Figure 25 shows that the majority of incidents on I-4 are classified as accidents, 

regardless of the type, and they constitute a total of 62% of the entire set.  This is 

followed by abandoned vehicle (15%), disabled vehicle (12%), hit and run (8%), 

obstruction (3%), and others (less than 1%).  Also, the spatial distribution of all incidents 

and accidents is shown in Figure 26.  The figure indicates that the section of I-4 between 

station 37 and station 42 has the highest concentration of incidents and accidents.  This 

area falls within the downtown of the city of Orlando and has the highest density of on- 

and off-ramps. 



 41

FHP
34%

OPD
65%

MPD
1%

 

Figure 23: Distribution of incidents on I-4 by source 
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Figure 24: Spatial distribution of incidents on I-4 by source 
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Figure 25: Distribution of incidents on I-4 by type 
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Figure 26: Spatial distribution of all incidents and accidents on I-4 
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2.3 INCIDENT DETECTION MODULE 

This task involves the development of an incident detection system on I-4 that is based on 

Artificial Neural Networks (ANN).  The new algorithm was developed using the Fuzzy 

ART network.  The major improvements in the new module were in the underlying 

mechanism in data retrieval and storage.  The data retrieval mechanism is now more 

robust and flexible than it used to be.  It has better error handling routines to account for 

unexpected runtime errors due to poor communications.  Also, the real time data is now 

directed to a database rather than a text-based (ASCII) file.  This allows the users to 

access the data and conduct queries on the database more efficiently.  The incident 

detection module used in the analysis is described in detail in this section. 

2.3.1 Software Conversion 

Throughout the development process, this module underwent a conversion from MS 

Visual Basic 5.0 to MS Visual Basic 6.0 in order to incorporate the new enhancements in 

data access and management introduced in the new version of VB 6.0.  The improved 

data access features improved the overall performance of the software through faster and 

more efficient data access objects.  Another major improvement in the software is its 

ability to manipulate the old loop detector data that was collected back in 1993 and 1994.  

The data was also converted to a database MS Access format, known as “mdb” format, 

which was compatible with the software.  This feature allows for viewing, querying, and 

filtering the old loop database. 
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2.3.2 Real Time Loop Detector Data 

The developed module allows for retrieval of real time loop detector data from the 

Freeway Management Center (FMC) over the phone line.  A dial-up connection can be 

easily established between the ITS lab at UCF and the computer system located at FMC, 

allowing for direct communication with the existing surveillance system.  The 

communication is established between a PC (client running Windows 98) at the ITS lab 

and another PC (server running also Windows 98 and a dial-up server) at FMC.  The 

server PC is networked at FMC with the communication server (D5MISCOM with NT 

platform), where the loop detector data is collected every 30 seconds.  The main role of 

the dial-up server is to link the client PC at the ITS lab to the D5MISCOM server. 

 

The real time feature of downloading loop detector data was significantly improved over 

the last version produced in a previous research project titled “Online Testing of Incident 

Detection Algorithms”.  The feature is explained in detail in the following subsections.  

The steps explained here assume that a dial-up connection has been already established 

between the computer running this application and the dial-up server at FMC.  First the 

user should invoke the real time data collection function from the main menu by selecting 

“Setup” from the “On-Line” menu as shown in Figure 27. 



 45

 

Figure 27: Main Menu of the Online Incident Detection and Traffic Prediction System 

2.3.2.1 ‘Setup’ option 

The setup option must be configured before the user can launch the real time data 

retrieval process.  The properties that must be set are shown in Figure 28.  The dialog 

window prompts the user for the following information: 

� Computer Name: This refers to the name of the remote computer where the loop 

detector data is initially compiled.  At this time, this refers to the “D5MISCOM” 

server previously mentioned. 

� Directory: This points to the remote directory where the device drivers are located.  

The default directory name is ‘detectordd’. 

 

On the local system, the user must also select a log file, where the real time data will be 

routed and stored cumulatively.  This file must be a MS Access database file (mdb 

format).  Currently, loop detector data collected in the same year is stored in one file, 
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where each day is compiled in one table.  Each table is given a name that starts with the 

letter “d” followed by the date in the format “mmddyy”, where mm, dd, and yy refer to 

the month, day, and year, respectively.  For instance, data collected on March 21, 2000 is 

stored in the table “d032100”.  The user must click on the button “Save As” to point to 

the location and name of the selected database file.  When done, the user can click “OK” 

and proceed to the next section. 

 

Figure 28: Setting remote and local connection properties 

2.3.2.2 ‘Loop Data’ option 

After setting up the connection properties, the user can launch the real time loop data 

function by selecting ‘Loop Data’ from the ‘On-line’ menu as shown previously in Figure 

27.  This action will launch a new window as shown in Figure 29.  The grid shown in the 

figure will appear blank, except for the station ‘IDS’ and the description of station 

locations, until the user clicks on the Start button.  The connection will be established and 

the process of data retrieval will begin.  After 30 seconds, the first data packet will arrive 

and parsed into the data grid as shown in Figure 29. 
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Figure 29: Snapshot of the real time loop detector data window 

The columns of the data grid are labeled from left to right as follows: 

• Station ID (SID) which ranges from 502 to 571. 
• Location of each station 
• Eastbound Speed from left lane (ESL) 
• Eastbound Speed from center lane (ESC) 
• Eastbound Speed from right lane (ESR) 
• Westbound Speed from left lane (WSL) 
• Westbound Speed from center lane (WSC) 
• Westbound Speed from right lane (WSR) 
• Eastbound Volume from left lane (EVL) 
• Eastbound Volume from center lane (EVC) 
• Eastbound Volume from right lane (EVR) 
• Westbound Volume from left lane (WVL) 
• Westbound Volume from center lane (WVC) 
• Westbound Volume from right lane (WVR) 
• Eastbound Occupancy from left lane (EOL) 
• Eastbound Occupancy from center lane (EOC) 
• Eastbound Occupancy from right lane (EOR) 
• Westbound Occupancy from left lane (WOL) 
• Westbound Occupancy from center lane (WOC) 
• Westbound Occupancy from right lane (WOR) 
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• Eastbound Average Speed (ES) 
• Westbound Average Speed (WS) 
• Eastbound Cumulative Volume (EV) 
• Westbound Cumulative Volume (WV) 
• Eastbound Average Occupancy (EO) 
• Westbound Average Occupancy (WO) 

 

The data will be updated every 30 seconds until the user chooses to stop the process by 

clicking on the ‘Stop’ button.  Before a new data packet arrives, the existing one is 

appended to the database log file as described before.  It should be noted from Figure 29 

that blank cells indicate areas on I-4 where the number of lanes changes from three to two 

or vise versa.  Locations with entirely blank rows indicate non-operational stations. 

2.4 STUDY AREA 

The loop detector stations along the 11.2-mile central corridor of I-4 provide point 

measurements of occupancy, speed, and volume every 30 seconds.  The location of the 

central corridor of I-4 in Orlando is shown in Figure 30.  The point measurements portray 

the up-to-date traffic conditions on the freeway.  The occurrence of a lane-blocking 

incident causes a bottleneck at the incident location, where the capacity is reduced by a 

percentage proportional to the type and severity of the incident.  If the capacity reduction 

is perceived by traffic, then the effect of the incident will propagate to reach the upstream 

and downstream loop detector stations.  As such, the effect of the incident is perceived 

enough to cause traffic disruptions and changes in the associated traffic patterns.  If the 

incident traffic patterns are captured and distinguished from other similar patterns, then 

the detection rate will increase and the false alarm rate will decrease. 
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Figure 30: Study section showing the central corridor of I-4 in Orlando 

2.5 THE FUZZY ART NETWORK 

The Fuzzy ART (Adaptive Resonance Theory) network is based on unsupervised 

learning, which does not require the knowledge of the output to each input pattern.  It is a 

clustering algorithm that maps a set of input patterns to a set of categories based on 

similarity of characteristics.  The Fuzzy ART network is composed of a preprocessor 

layer, an input layer, and a class representation layer.  The Fuzzy ART network takes the 

traffic patterns as inputs, which are represented in two dimensions: space and time.  

During training the network assigns a category to each input pattern such that similar 

patterns are assigned to the same category.  The topology of the Fuzzy ART model is 

presented in the next section. 
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2.5.1 Topology of the Fuzzy ART Network 

Fuzzy ART was developed by Carpenter et al. in 1991.  It is a clustering algorithm that 

maps a set of input patterns to a set of categories.  It is basically a synthesis of ART and 

Fuzzy logic.  This algorithm has advantages over backpropagation networks as it 

provides fast stable learning in response to analog or binary input patterns.  By 

incorporating the basic features of the ART networks, Fuzzy ART overcomes the 

stability/plasticity dilemma.  Also, it is an incremental approach that has the potential for 

on-line implementation.  Moreover, the learning process is less time-consuming than it is 

with backpropagation models. 

 

The Fuzzy ART neural network consists of two layers: the input layer (F1) and the class 

representation layer (F2).  A simplified layout of the network is shown in Figure 31.  

Before the input patterns are presented to F1, they are normalized using complement 

coding at a preprocessor layer F0.  In particular, if a = (a1, a2,..., aM), ai∈[0,1] and M 

denoting the input pattern size, represents an input pattern to Fuzzy ART, then the 

preprocessor layer computes the complement coding ac of the vector a as follows: 

ac = 1–a = (1-a1, 1-a2,..., 1-aM) [5] 

And the new input pattern I takes the form 

I = (a, ac) = ),...,,,...,( 11
c
M

c
M aaaa  [6] 
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Because of the complement coding technique the size of the input patterns now becomes 

2M.  Let i denote a node in the input layer F1, i∈{1, 2,..., 2M}, and j denote a node in the 

class representation layer F2, j∈{1, 2,..., N}.  The number of nodes in layers F1 and F2 is 

2M and N, respectively.  Every node i is connected to every node j with a bottom-up 

weight Wij.  Similarly, every node j is connected to every node i with a top-down weight 

wji.  All weights emanating from node i are denoted by Wi = (Wi1, Wi2,..., WiN), i∈{1, 2,.., 

2M), and those emanating from node j are denoted by wj = (wj1, wj2,..., wj,2M), j∈{1, 2,..., 

N}, often called a template.  The algorithm makes use of the fuzzy-min and fuzzy-max 

operators.  The two operators are explained in Figure 32. 

 

Fuzzy ART performs pattern matching between bottom-up input and top-down learned 

prototype vectors.  This matching process results in either a resonant state that leads to 

stable prototype learning or a self-regulating parallel memory search.  The search ends by 

either selecting an established category and refining the category type to incorporate new 

information in the input pattern or selecting a previously untrained node or category.  The 

matching criterion is defined by the dimensionless parameter called vigilance, which 

weighs how close the input pattern must be to the top-down prototype vector for 

resonance to occur.  Low vigilance leads to broad generalization and abstract prototypes.  

High vigilance leads to narrow generalization and prototypes representing fewer input 

patterns. 
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Figure 31: A simplified layout of the Fuzzy ART neural network architecture 
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Figure 32: Illustration of fuzzy operators 
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Fuzzy ART incorporates the design features of ART1.  Table 2: shows the translation of 

ART1 operations into Fuzzy ART for the category choice, matching, search, and 

learning.  The fuzziness is introduced by replacing the intersection operator (∩) with the 

MIN operator.  In the next section we explain the steps of the Fuzzy ART algorithm. 

Table 2: Analogy between ART1 and Fuzzy ART 

j

j
jT

w

wI

+

∩
=

α
j

j
jT

w

wI

+

∧
=

α

ρ≥
∩
I

wI ρ≥
∧
I
wI

)()( wIw old
j

new
j ∩= )()( wIw old

j
new
j ∧=

Fuzzy ART (Analog)ART1 (Binary)

Category Choice

Fast Learning

Match Criterion

 

2.5.2 The Fuzzy ART Algorithm 

At first we introduce the definition of the following terms: 

Input vector: Each input pattern I is an M-dimensional vector (I1…, IM), where each 

component Ii is in the interval [0,1].  The number of input patterns is represented by p.  

The collection of all input patterns is referred to as the input list.  This input list can be 

presented to Fuzzy ART as many times as necessary.  Each time the input list is 

presented to the network is called list presentation.  The order of the patterns within the 

input list is not significant and may change from one list presentation to the other. 
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Weight vector: Each category (j) is associated with an adaptive weight vector 

),...,(w 1 jMjj ww≡ , which is also called Long-Term Memory (LTM) traces.  The number 

of categories N (j=1,…, N) is arbitrary. 

Parameters: The dynamics of Fuzzy ART are determined by the choice parameter 

0>α ; a learning parameter ]1,0[∈β ; and a vigilance parameter ]1,0[∈ρ . 

 

The learning procedure is described in the following steps: 

1. Select a value for the vigilance parameter ρ, the learning parameter β, and the 

choice parameter α. 

2. Initialize the weights wji  such that  

1...1 === jMj ww  [7] 

3. Present an input pattern I to the F1 layer.  The bottom-up input Tj(I) from F1 to 

node j in the F2 layer is computed using the choice function 









+

∧=
committed is  node if

w

wI
duncommitte is  node ifI

)I(
j

j

T
k
j

k
jj

α
 [8] 

Where the norm |.| is defined by 

∑
=

=
M

i
ix

1
x  [9] 
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k
jw  = The weights vector at iteration k, or before input pattern I is presented to the 

network. 

4. Node J in the F2 layer is selected if it satisfies the following condition 

TJ (I) = max {Tj (I)}; j = {1, 2,..., N} [10] 

If there is more than one node that maximizes Tj, the node with the lowest index j is 

selected.  At this moment, node J becomes committed. 

5. CHECK THE VIGILANCE CRITERION USING THE FOLLOWING MATCHING FUNCTION 

ρ≥
∧

I

wI k
J

 [11] 

If this condition is satisfied, then resonance occurs and node J is selected to represent 

input pattern I and we proceed to step 6.  If not, then we move back to step 4, reset node 

J, and search for another node to represent pattern I.  To prevent node J from being 

chosen again for the same input pattern I, we set TJ = -1 for as long as the same input 

pattern is being presented. 

6. At this step, node J has been chosen to represent I.  Once a category is selected 

for coding it becomes committed.  During training each weight vector converges 

to a limit.  The weight vectors must be updated as follows: 

k
J

k
J

k
J w)1()wI(w 1 ββ −+∧=+  [12] 
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and 

1

1
1

w
w

W
+

+
+

+
=

k
J

k
Jk

J α  [13] 

1w +k
j  and 

1W +k
j  =are the weights vectors at iteration k+1 in layers F2 and F1, 

respectively. 

Fast learning occurs when 1=β . 

7. Go back to step 3 and repeat all the steps until all the input patterns have been 

presented to the network.  This completes one list presentation. 

8. If all input patterns have been presented and at least one weight has changed 

during the last list presentation, then steps 3 through 7 should be repeated to complete a 

new list presentation.  Learning ends if the weights do not change during one list 

presentation. 

2.5.3 The Fuzzy ART Module 

A special program was developed using MS Visual BASIC to perform the analysis of 

incident detection using Fuzzy ART algorithm.  The program features three main 

functions: patterns generation, Fuzzy ART application, and calculation of detection rates 

and false alarm rates.  The program main menu is shown in Figure 33.  In this section we 

will explain the features and parameters of each function. 
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Figure 33: The main menu of the Fuzzy ART program 

2.5.3.1 Traffic Pattern Generation 

The traffic pattern generation process requires setting a few parameters that are shown in 

Figure 34.  The figure shows the pattern generation form with all the available options.  

Each set of patterns is identified with a unique identification name.  The input directory 

points to the location of the loop detector files whereas the output directory points to the 

location where the output patterns will be stored.  The traffic patterns can be generated 

from occupancy, speed, or volume data, or any combination of the three.  Traffic patterns 

can be constructed using data from any combination of the three lanes or the average of 

the three lanes.  On the form the temporal and spatial pattern sizes are also specified in 

minutes and number of stations, respectively.  The patterns can be generated using 

absolute or relative measurements of the traffic parameters.  Relative measurements can 

be based on spatial or temporal difference.  Patterns generated using the relative spatial 

difference are expressed in terms of the difference between each two consecutive 

stations.  Patterns generated with the relative temporal difference are expressed as the 
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difference between each two consecutive 30-second periods at each station.  Other 

additional features in constructing the traffic patterns include rounding off the numbers, 

smoothing the loop detector data, and normalizing the data. 

 

Figure 34: Form showing the parameters of generating traffic patterns 

Both training and testing data sets were built gradually from loop detector data 

surrounding the incident.  Figure 35 shows the form used to build the traffic patterns from 

each incident case.  Traffic patterns generation requires the identification of the incident 

case number, which was assigned during the filtering process, the direction of traffic at 

the time of the incident, the incident location marked by the upstream station of the 
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incident.  The boundary conditions are also selected by specifying the starting and ending 

time and the starting and ending station.  Traffic patterns were constructed from each 

incident case and added cumulatively to the traffic data set. 

 

Figure 35: Traffic pattern generation form 

2.5.3.2 Algorithm Execution 

The actual implementation of the Fuzzy ART algorithm is conducted using the form 

shown in Figure 36.  The form reads the input patterns from the patterns directory and 

writes the output file to the output directory.  As mentioned earlier, the dynamics of the 

Fuzzy ART is controlled by three parameters: α, ρ, and β.  The three parameters must be 
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specified on the form.  Also, the maximum number of categories, the maximum number 

of cycles, the number of list presentations, and the maximum convergence error must be 

specified on the form.  The form also provides the capability of performing incremental 

learning, which allows the network to load previously updated weights and resume 

learning from a new data set. 

 

Figure 36: Fuzzy ART input form 

2.6 METHODOLOGY 

This section describes the methodology used to apply the Fuzzy ART network to freeway 

incident detection.  The methodology is described in Figure 37.  The first step was to 

identify which traffic parameters should represent the traffic conditions on the freeway.  

Three scenarios were considered with the application of Fuzzy ART: occupancy, speed, 
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and occupancy and speed together.  Volume data was not incorporated in the 

representation of traffic conditions.  Training and testing patterns were generated from 

the filtered loop detector data using a special program.  Each generated traffic pattern in 

both training and testing data sets was identified as either an incident or incident-free 

pattern.  The identification of the traffic pattern type was not used, however, during the 

training process since Fuzzy ART is based on unsupervised learning.  This was 

essentially required to evaluate the performance of the network. 

 

During training the generated training data set was presented to the Fuzzy ART network 

for clustering.  Traffic patterns clustering required a few numbers of cycles to stabilize.  

Once reached, each traffic pattern is assigned to one category.  At the end of training the 

Fuzzy ART network is saved to retain all the values of weights adjusted during training.  

The resulting categories from the training process, along with the predetermined type of 

traffic patterns, were used to identify the incident pattern categories.  The selected 

incident pattern categories were used to calculate the detection rate and false alarm rate 

for the training data set.  The trained network, along with the selected incident pattern 

categories, was later presented with the testing data set to evaluate the performance of the 

Fuzzy ART network.  Both training and testing results were eventually used for 

comparative analysis of the network performance. 
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Start

Select representative traffic parameters:
occupancy, speed, and/or volume

Generate training patterns Generate testing patterns

Perform training with Fuzzy ART

Identify Incident Categories

Save trained Fuzzy ART network

Evaluate training results

Evaluate training results

Compare training and testing results
 

Figure 37: Methodology of applying the Fuzzy ART network 

2.7 TRAINING AND TESTING DATA SETS 

For training and testing purposes, the selected incident data set was further split into two 

subsets of incidents: one that was used for training and the other for testing.  Each subset 

was selected from the previously verified set of incidents.  The ratio between the training 

set and the testing set is 2:1, as recommended in most of the literature on neural 

networks.  The number of incidents in the training and testing subsets was 89 and 41, 

respectively.  The training and testing sets were examined to ensure that they possess the 
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same characteristics of the collected incident set, and thus, provide true representation of 

the entire incident population.  In order to make sure the two subsets are also 

representatives of the original set, the temporal distribution for each is plotted as shown 

in Figure 38 and Figure 39.  The temporal distribution of each data set reveals that they 

both maintain similar characteristics.  In other words, both data subsets can represent the 

original data set.  Close representation to the original distribution insures that the 

proposed neural network models are trained and tested with a variety of incidents under 

diversified traffic conditions. 
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Figure 38: Temporal distribution of the training data set 
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Figure 39: Temporal distribution of the testing data set 

2.8 TRAINING THE FUZZY ART NETWORK 

Training Fuzzy ART networks requires the use of as many traffic patterns as possible.  

More traffic patterns ensure the network has built sufficient internal representation of a 

wide range of various traffic conditions.  The traffic patterns generated to train the Fuzzy 

ART network were constructed from traffic conditions observed in the neighborhood of 

each selected lane-blocking incident in the training data set.  The total number of training 

patterns generated from 89 lane-blocking incidents was nearly 33,000. 

 

All traffic patterns generated for training and testing the Fuzzy ART network were 

represented by the spatial difference between two consecutive stations.  To ensure all 

values fall in the range between 0 and 1, a linear transformation function was applied.  A 

sample of the input patterns file used for training Fuzzy ART is shown in Figure 40.  It 
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should be noted here that the input patterns do not have a desired response since Fuzzy 

ART is based on unsupervised learning.  The input traffic patterns are separated by 

commas and each line has the following format: 

• Pattern Number: a unique ID that identifies the pattern 

• Case Number: the incident ID for which the traffic pattern was generated 

• Time Period: the incident time 

• Location: the immediate upstream station of the incident location 

• Traffic pattern values: the absolute or relative speed and/or occupancy values 

observed near the incident location. 

 

Figure 40: A sample of the input traffic patterns training file used by the Fuzzy ART 
program 

The processes of training and testing the Fuzzy ART network were conducted separately.  

The training process must be completed first and will result in assigning all traffic 
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patterns to a group of clusters according to their common characteristics.  Since Fuzzy 

ART provides fast stable learning, the training process for the different scenarios 

considered in the study did not consume more than 5 cycles on the average.  Large 

patterns typically require more cycles for the network to stabilize than small patterns.  

However, all training phases were completed in the range of 3 to 7 cycles.  Training was 

terminated when no changes in category assignment are made in two consecutive cycles.  

At the end of the training process the Fuzzy ART network retains all the vector weights 

that contain the clustering information acquired and adjusted throughout the training 

phase. 

2.8.1 Input to the Fuzzy ART Network 

The structure of the traffic patterns, used as input to the Fuzzy ART network, is two-

dimensional.  The spatial size is represented by the number of loop detector stations 

while the temporal size is measured by the number of 30-second periods.  The spatial size 

was set to 3 stations: one downstream and two upstream of the incident location.  The 

temporal size was varied between one to two 30-second periods. 

2.8.2 Output of the Fuzzy ART Network 

The Fuzzy ART is based on unsupervised learning, which does not require the knowledge 

of the output to each input pattern.  However, the Fuzzy ART network itself assigns an 
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output to each input pattern at the end of the training process.  This output represents the 

category to which the corresponding pattern belongs.  Similar input patterns are typically 

assigned to the same cluster or category.  The degree of clustering depends on the values 

of the Fuzzy ART parameters. 

2.8.3 The Selected Fuzzy ART Network Topology 

The topology of the Fuzzy ART network is predefined and is only affected by the size of 

the input patterns.  The training process is controlled by three parameters: the choice 

parameter, the learning parameter, and the vigilance parameter.  Both the choice 

parameter and the learning parameter were held constant at 0.01 and 1.0, respectively.  

The vigilance parameter, however, was varied from 0.8 to 0.9 to 0.95.  The vigilance 

parameter defines the degree of clustering, which could have an effect on the network 

incident detection performance.  In addition the maximum error of convergence was set 

to 0.0001 and the maximum number of cycles to 1000. 

2.9 SELECTION OF INCIDENT CLUSTERS 

In order to evaluate the performance of the Fuzzy ART network in incident detection it 

was necessary to mark the clusters of the traffic patterns associated with incidents.  Those 

are referred to as incident clusters and are largely used to estimate detection rates and 

false alarm rates.  The process of selecting the clusters of incident traffic patterns is based 

on the analysis of clusters produced by the training data set.  Due to the fact that the exact 
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incident time was not precisely known to the nearest 30-second period, the selection of 

incident clusters is more complicated than simply identifying the clusters of patterns 

observed at the reported incident time.  Although the incident data underwent an 

extensive verification process to ensure that the location and time of each incident are as 

accurate as possible, there were still some uncertainties in pinpointing the exact incident 

time.  This dilemma has led to the need to develop another approach to identify the 

incident clusters. 

 

The approach of selecting incident clusters relies primarily on the assumption that the 

traffic patterns observed after the incidents are mostly unique and discernible to a great 

extent from other similar traffic patterns observed during recurrent congestion or frequent 

traffic disturbances.  If this assumption holds true then the incident clusters are observed 

most frequently in the vicinity of the incident time and location and least frequently 

elsewhere.  In this case, the objective of the approach is to select the clusters that 

maximize the ratio between their occurrences in the vicinity of the incident time and their 

occurrences elsewhere.  In mathematical formulation the first selected incident cluster ci 

is determined such that: 
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Where, 

ic  = The selected ith incident cluster 

)(1 jcf  = The frequency of cluster cj in the neighborhoods of the reported incident times 
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)(2 jcf  = The frequency of cluster cj elsewhere 

)( icf  = The ratio between )(1 jcf  and )(2 jcf  

N = The total number of generated clusters during training 

 

The second incident cluster is selected such that the same ratio is maximized for all 

remaining clusters, and so on.  The selection process ends when all possible incident 

clusters have been exhausted and most incidents have been associated with at least one 

cluster.  Incidents with similar effect on traffic conditions are very likely to be associated 

with the same cluster.  The incident neighborhood is defined as the group of clusters to 

which traffic patterns around the incident reported time were mapped.  The boundary of 

the incident neighborhood is contingent upon the expected accuracy of the reported 

incident time as well as the maximum mean time of detection.  The boundary of the 

incident neighborhood was arbitrarily selected as ±5 minutes of the incident reported 

time.  In other words, all clusters generated within ±5 minutes of the reported incident 

time were examined.  This time range ensures that the actual incident time and the 

propagating effect of the incident on the traffic conditions are contained within the 

incident neighborhood.  For illustration, Table 3 shows the number of incidents mapped 

to each selected incident cluster for speed-based patterns. 

 

It should be noted here that the selection of incident clusters is a similar process to the 

selection of threshold values in the application of traditional incident detection 

algorithms.  Each selected incident cluster represents one threshold.  Evidently, the 

application of Fuzzy ART model to automatic freeway incident detection is a multiple-
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threshold process.  In other words, no single incident cluster could map all incidents due 

primarily to the different incident characteristics and the various prevailing traffic 

conditions at the time of the incident.  Therefore, it was possible to select one incident 

cluster for each group of incidents that share similar characteristics and effects on traffic 

conditions.  This usually resulted in selecting several incident clusters that could 

accommodate all the incidents used for training. 

Table 3: The number of incidents mapped to each selected cluster using speed-based 
patterns 

Selected Incident Clusters Number of Mapped Incidents 
1 4 
2 3 
3 1 
4 17 
5 5 
6 22 
7 2 
8 3 
9 7 

10 8 
11 1 
12 6 
13 2 
14 2 
15 1 

2.10 DESIGN FACTORS OF THE FUZZY ART NETWORK 

Various factors can affect the performance of the Fuzzy ART network.  Those factors are 

either related to the topology of the network or the characteristics of the input patterns.  

Factors related to the network topology include the choice parameter, the learning 

parameter, and the vigilance parameter.  In this study the vigilance parameter was varied 

to investigate its effect on the network performance.  Another set of factors is related to 
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the input pattern characteristics such as the size of the traffic pattern in both the spatial 

and temporal dimensions and the type of traffic parameters used to represent traffic 

conditions.  The spatial size of the pattern was set to 3 stations to ensure that the 

propagated effect of the incident is sufficiently contained in the traffic pattern.  The 

temporal size of the pattern, however, took on one of two values: one 30-second period 

and two 30-second periods.  This was necessary to investigate the effect of the temporal 

pattern size on the network performance.  In addition, three different scenarios of traffic 

pattern representation were considered as follows: occupancy, speed, and occupancy and 

speed.  The various designs considered in this study are listed in Table 4.  The amount of 

training time required for each scenario varied from two hours to several hours according 

to the size of the traffic patterns and the value of the vigilance parameter. 

Table 4 Various designs of the Fuzzy ART network 

Vigilance Parameter (ρ)  
Traffic Parameter ρ = 0.8 ρ = 0.9 ρ = 0.95 

Occupancy 1x3a 

2x3 
1x3 
2x3 

1x3 
2x3 

Speed 1x3 
2x3 

1x3 
2x3 

1x3 
2x3 

Occupancy + 
Speed 

1x3 
2x3 

1x3 
2x3 

1x3 
2x3 

a (1x3) refers to a traffic pattern of size one 30-second period by 3 stations 

2.11 TESTING THE FUZZY ART NETWORK 

Testing Fuzzy ART was also conducted using the testing incident data set of 41 lane-

blocking incidents.  All testing patterns were generated from observations of traffic 

conditions before and after the reported incident time and upstream and downstream of 

the reported incident location.  The total number of traffic patterns generated from the 
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incident data set was nearly 17,000.  In addition, another set of traffic patterns was 

generated from incident-free traffic peak periods.  The additional traffic patterns set was 

necessary to better estimate the false alarm rate under incident-free conditions.  The total 

number of patterns generated from the incident-free peak periods was nearly 80,000.  The 

combined total number of traffic patterns was nearly 97,000.  This sample is believed to 

be enough to test the performance of the Fuzzy ART network. 

 

The testing process is illustrated in Figure 41, which shows how traffic patterns are 

assigned to either one of the incident clusters or one of the incident-free clusters.  As 

shown in the figure, an incident-free pattern should be assigned to one of the incident-

free clusters.  However, a false alarm will result from falsely mapping one of the 

incident-free patterns to one of the incident clusters.  Similarly, detection is successful if 

an incident pattern is assigned to one of the incident clusters.  However, detection is 

missed if one of the incident patterns has been inadvertently mapped to one of the 

incident-free clusters. 
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Figure 41: A schematic showing the testing process to evaluate the Fuzzy ART network 
performance 

When implemented on-line, the trained Fuzzy ART network will receive real life data 

every 30 seconds from all the freeway loop detectors, construct the traffic patterns, and 

map the traffic patterns to either a previously established category or a new category.  

When a new category is selected the weights will be updated to reflect the addition of the 

new category and permit mapping traffic patterns to it in the future.  This procedure 

proves the property that Fuzzy ART is an incremental approach that has a potential for 

on-line implementation. 
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Testing Fuzzy ART was also conducted using the testing incident data set of 41 lane-

blocking incidents.  All testing patterns were generated from observations of traffic 

conditions before and after the reported incident time and upstream and downstream of 

the reported incident location.  The total number of traffic patterns generated from the 

incident data set was nearly 17,000.  In addition, another set of traffic patterns was 

generated from incident-free traffic peak periods.  The additional traffic patterns set was 

necessary to better estimate the false alarm rate under incident-free conditions.  The total 

number of patterns generated from the incident-free peak periods was nearly 80,000.  The 

combined total number of traffic patterns was nearly 97,000.  This sample is believed to 

be enough to test the performance of the Fuzzy ART network. 

2.12 PERFORMANCE MEASURES 

The evaluation of performance of incident detection algorithms has been commonly 

based on three measures of effectiveness: detection rate, false alarm rate, and mean time 

of detection.  While detection rate and false alarm rate can be accurately estimated, the 

mean time of detection is a more sensitive measure that relies primarily on the knowledge 

of the exact incident time.  Certainty of the incident time can only be available when 

using simulated incident data since incidents are artificially induced at certain time and 

location.  However, in real life data it is practically impossible to be precisely certain of 

the exact incident time and thus the accuracy of the calculated mean time of detection 

will be highly questionable.  Therefore, instead of using the reported incident time to 

calculate the mean time of detection, a maximum time tolerance was introduced.  The 

maximum time tolerance was arbitrarily selected as 5 minutes.  This means that during 
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training and testing a true detection is only considered if the detection time is within ±5 

minutes from the reported incident time.  Any detection elsewhere is treated as a false 

alarm.  In the next section a persistence factor and a persistence period are defined and 

introduced to reduce the false alarm rate. 

2.13 PERSISTENCE PERIOD AND PERSISTENCE FACTOR 

The concept of the using a persistence period was introduced in some incident detection 

algorithms such as California version 8.  The advantage of using a persistence period is to 

suppress false alarms that usually result from compression waves, which create traffic 

conditions very similar to those observed immediately following the occurrence of a lane 

blocking incident.  Therefore, a persistence period was introduced to improve the 

performance of the Fuzzy ART algorithm by reducing the false alarm rates.  Instead of 

declaring an incident immediately following the encounter of a single occurrence of one 

of the selected incident clusters, the detection is confirmed only if more than one traffic 

pattern has been mapped to one of the incident clusters within the persistence period.  

The persistence period was selected as three minutes or six 30-second periods.  The 

number of times an incident cluster is observed within the persistence period is also 

referred to as the persistence factor (PF).  The persistence factor ranges between 1 and 6 

since the persistence period itself consists of 6 consecutive clusters.  For instance, PF = 2 

means that detection is declared upon mapping at a particular location at least two out of 

six traffic patterns generated in the designated 3-minute persistence time period, to one of 

the selected incident clusters.  This reduces the false alarms that result from occasional 

misclassification of traffic patterns. 
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During on-line implementation the persistence period is represented by a 3-minute 

moving time window that advances only one station at a time until the entire corridor has 

been scanned, and then advances one 30-second period in real time.  Figure 42 shows the 

3-minute persistence period the current time on the time-space detector data matrix.  The 

space dimension represents the loop detector stations along the central corridor of I-4.  

Each row in the time-space matrix represents a 30-second data packet that is compiled at 

the computer system at the Freeway Management Center in Orlando.  For real time 

implementation the 30-second data packets are used to generate traffic patterns that are 

presented to the trained Fuzzy ART for clustering.  The resulting clusters are then 

compared with the previously selected incident clusters to decide on whether the current 

traffic conditions are associated with an incident or not. 
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Figure 42 Illustration of the persistence period and persistence factor 
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2.14 CALCULATION OF DR AND FAR 

Detection rate and false alarm rate are both used to evaluate the performance of the Fuzzy 

ART-based incident detection algorithm.  The procedure for calculating DR and FAR was 

based on examining the clusters of all traffic patterns generated within the 3-minute 

persistence time period.  Depending on the value of the persistence factor PF, an incident 

is declared and confirmed if one of the selected incident clusters has been observed 

during the persistence period at least PF times.  For instance, if PF is equal to 3, then an 

incident can only be confirmed if, in one persistence period, one of the selected incident 

clusters has been observed at least 3 times.  Therefore, given PF=j, the detection rate for 

each incident cluster can be calculated as follows: 

N
DDR

j
ij

i =)(  [15] 

Where 

j
iDR)(  = the detection rate for incident cluster i and PF=j 

j
iD  = the number of incidents detected by cluster i for PF=j 

N = the total number of incidents 

 

Given PF=j, the overall detection rate for all incident clusters is obtained by summing up 

all the detection rates for each incident cluster j
iDR)(  as follows: 
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Where, 

jDR  = the overall detection rate for PF=j 

Nc = the total number of selected incident clusters 

 

Similarly, for each PF=j, the false alarm rate associated with each incident cluster can be 

calculated as follows: 

a
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i N
AFAR =)(  [17] 

Where, 

j
iFAR)(  = the false alarm rate associated with incident cluster i for PF=j 

j
iA  = the total number of false alarms associated with incident cluster i for PF=j 

Na = The total number of algorithm applications 

 

The overall false alarm rate for all incident clusters is also obtained by summing up all 

the false alarm rates for each incident cluster j
iFAR)(  as follows: 
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Where, 
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jFAR  = the overall false alarm rate for PF=j 

 

It should be noted here that both detection rates and false alarm rates are calculated for 

each value of the persistence factor j, which ranges between 1 and 6 for a persistence 

period of 3 minutes (6 30-second periods).  The performance envelopes between 

detection rate and false alarm rate are plotted for each value of the persistence factor.  

Each performance envelope is obtained by drawing the cumulative changes in the 

detection rate and false alarm rate that result from incorporating each additional incident 

cluster.  Table 5 illustrates an example of the cumulative detection rate and false alarm 

rate for each selected incident cluster.  In the next stage the performance envelopes will 

be presented and examined to show the effect of the most influencing factors on the 

Fuzzy ART algorithm performance.  Those factors include the value of the vigilance 

parameter, the temporal size of the traffic patterns, and the type of traffic parameter used 

to represent traffic conditions. 
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Table 5: Cumulative detection rate and false alarm rate for each incident cluster 
Selected 
Incident 
Cluster 

Number of 
mapped 
incidents 

 
FAR (%) 

 
DR (%) 

1 4 0 4.49 
2 3 0 7.87 
3 1 0 8.99 
4 17 0.02 28.1 
5 5 0.03 33.7 
6 22 0.16 58.4 
7 2 0.19 60.7 
8 3 0.24 64 
9 7 0.35 71.9 

10 8 0.58 80.9 
11 1 0.64 82 
12 6 1.05 88.8 
13 2 1.28 91 
14 2 1.57 93.3 
15 1 1.82 94.4 

2.15 ANALYSIS OF RESULTS 

This section presents the results of training and testing the Fuzzy ART network.  The 

incident detection performance of the Fuzzy ART network is measured in terms of 

detection rate and false alarm rate using the traditional performance envelopes adopted by 

most incident detection analyses.  In order to achieve better performance, several 

scenarios were considered by varying the factors that are likely to affect the network 

performance.  Those factors include the size of the temporal traffic pattern, the type of 

traffic parameter used to represent traffic conditions, and the vigilance parameter that 

controls the degree of clustering.  Each of these factors proved to have influenced the 

overall performance of the network.  The effect of the persistence factor on the network 

performance is also investigated here.  Finally, a comparative evaluation of the 

performance of the two artificial neural networks applied in this study is presented.  The 
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performance of the Fuzzy ART network is also compared to that of California algorithm 

versions 7 and 8. 

2.15.1  The Effect of the Persistence Factor 

As mentioned earlier the persistence factor was introduced to improve the performance of 

the Fuzzy ART incident detection algorithm by reducing the false alarm rate.  The 

persistence period was selected as a 3-minute moving time period or 6 30-second periods.  

In this section the effect of the persistence factor is investigated.  The persistence factor 

was varied from 1 to 6, which defines the number of times an incident cluster has to 

persist during each persistence period in order for an incident to be declared.  

Comparative evaluation of the performance envelopes for different scenarios is presented 

here.  Figure 43, Figure 44, and Figure 45 show the performance envelopes for one-

minute occupancy patterns using testing results for ρ=0.80, 0.90, and 0.95, respectively.  

The effect of the persistence factor is not clear from the first two figures since the 

performance of each seems to fall within a small variation.  However, for ρ=0.95 large 

values of persistence factors (PF=5 and 6) resulted in a significant drop in the 

performance while persistence factor values in the range of 1 to 4 seem to give fairly 

similar performance.  This observation is likely due to the rapid change in clusters with 

slight variation in traffic conditions at high values of ρ, a case that will reduce the 

likelihood of observing the same cluster for 5 or 6 consecutive 30-second periods.  Figure 

45 shows, however, that for PF=2 the performance improves up to a value of 0.3% FAR. 
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Figure 43: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using one-minute occupancy patterns and ρ = 0.80 
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Figure 44: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using one-minute occupancy patterns and ρ = 0.90 
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Figure 45: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using one-minute occupancy patterns and ρ = 0.95 

The effect of the persistence factor on the performance of speed-based testing results is 

shown in Figure 46, Figure 47, and Figure 48.  For ρ=0.80 the performance varied 

substantially with different values of the persistence factor.  Figure 46 shows that the best 

performance is achieved by PF=1 up to 0.4% FAR, then by PF=2 thereafter.  The same 

observation can be supported by Figure 47 and Figure 48 for ρ=0.90 and ρ=0.95, 

respectively.  The two figures also show that the performance degraded with larger values 

of PF due primarily to the same reason mentioned before.  Similar conclusions can be 

drawn from the performance of occupancy-speed patterns shown in Figure 49, Figure 50, 

and Figure 51.  A persistence factor of 2 was arbitrarily selected and adopted throughout 

the rest of the analysis.  It should be noted, however, that regardless of the value of the 

persistence factor, the effect of the factors presented in the following sections remain 
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unchanged.  A complete presentation of the performance envelopes under all possible 

combinations of the selected variables can be found in Appendix A. 
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Figure 46: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using one-minute speed patterns and ρ = 0.80 
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Figure 47: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using one-minute speed patterns and ρ = 0.90 
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Figure 48: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using one-minute speed patterns and ρ = 0.95 
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Figure 49: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using one-minute occupancy-speed patterns and ρ = 0.80 
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Figure 50: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using one-minute occupancy-speed patterns and ρ = 0.90 
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Figure 51: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using one-minute occupancy-speed patterns and ρ = 0.95 
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2.15.2  The Effect of the Vigilance Parameter (ρ) 

The vigilance parameter is one of the most important parameters that control the 

dynamics of Fuzzy ART network.  This parameter determines the degree of clustering 

achieved by the algorithm.  As ρ increases, the number of generated clusters will 

increase, resulting in finer clustering.  On the other hand, small values of ρ lead to coarse 

clustering.  To investigate the effect of the degree of clustering on the performance of the 

algorithm, three sets of ρ values were suggested (0.80, 0.90, and 0.95).  For each scenario 

considered here the training process was performed using each of the three vigilance 

parameter values.  To illustrate the effect of the vigilance parameter on the algorithm 

performance the other influencing factors were held constant. 

 

Figure 52 and Figure 53 show the performance envelopes during training using 

occupancy and speed patterns, respectively.  The two figures were based on patterns with 

a temporal size of two 30-second periods and for a persistence factor equal to two.  It is 

clearly shown that as the value of the vigilance parameter increases, the performance 

envelope is shifted upwards, indicating improvement in performance.  The performance 

improvement is evidenced by the increase in detection rates at the same values of false 

alarm rates or a decrease in false alarm rates at the same values of detection rates.  The 

performance envelopes of the testing results, shown Figure 54, Figure 55, and Figure 56, 

also exhibit the same effect.  The three figures show the performance envelopes for 

occupancy, speed, and occupancy-speed patterns, respectively.  Large values of ρ result 

in fine clustering of the traffic patterns and, consequently, an increased ability to 
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distinguish incident patterns from incident-like patterns.  In other words, as ρ increases, 

traffic patterns associated with the incidents are more likely to be separable from similar 

traffic patterns that usually cause false alarms.  This evidently results in reduction in the 

false alarm rate at the expense of increasing the number of incident clusters.  Finer 

clustering creates a tendency to separate traffic patterns associated with incidents into 

more clusters, which results in increasing the number of selected incident clusters.  It 

should also be noted here that performance derived from testing results has obviously 

dropped from that of the training results.  This is a common observation in most artificial 

neural network applications and is attributed to the network’s less-than-perfect ability to 

generalize from the limited size of the training data set. 
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Figure 52: DR-FAR performance envelopes of the Fuzzy ART network for training 
results using occupancy patterns with two 30-second periods and PF=2 
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Figure 53: DR-FAR performance envelopes of the Fuzzy ART network for training 
results using speed patterns with two 30-second periods and PF=2 
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Figure 54: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using occupancy patterns with two 30-second periods and PF=2 
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Figure 55: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using speed patterns with two 30-second periods and PF=2 
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Figure 56: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using occupancy-speed patterns with two 30-second periods and PF=2 
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2.15.3  The Effect of the Temporal Pattern Size 

Another factor that is very likely to affect the performance of the algorithm is the size of 

the traffic pattern.  As the traffic pattern size increases it becomes more representative of 

the traffic conditions on the freeway section.  As mentioned earlier, all traffic patterns are 

defined by the spatial dimension and the temporal dimension.  The spatial dimension was 

fixed to three consecutive stations while the temporal dimension varied from one to two 

30-second periods.  The temporal pattern size influences directly the mean time of 

detection since the classification of the pattern cannot be made until the pattern is fully 

developed.  In other words, patterns with larger temporal sizes take longer time to 

develop, and therefore, the decision on whether or not they are associated with an 

incident will be further delayed. 

 

Figure 57 and Figure 58 show the performance envelopes for training results using half-

minute and one-minute patterns of occupancy and speed, respectively.  The comparative 

evaluation of performance was based on a persistence factor equal to two.  The figures 

show that performance improved significantly when the pattern size increased from half-

minute to one-minute for both occupancy and speed patterns.  The pattern size is 

indicated in parentheses as (axb), where a and b represent the temporal and spatial 

pattern sizes, respectively.  The figures also show that the performance improved when 

the vigilance parameter increased from 0.8 to 0.95, as presented in the previous section.  

Similar conclusions were supported by the testing results, as shown in Figure 59, Figure 

60, and Figure 61.  The three figures show that one-minute patterns resulted in better 
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performance than half-minute patterns for testing results using occupancy, speed, and 

occupancy-speed patterns.  The most reasonable interpretation to this observation is that 

one-minute patterns contain more information on the effect of the incident than half-

minute patterns.  The additional information in larger patterns is more likely to make the 

patterns associated with incidents more discernible from incident-like patterns.  In this 

case false alarm rate will significantly decrease.  However, as the pattern size increases 

the expected number of incident clusters will also increase. 
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Figure 57: DR-FAR performance envelopes of the Fuzzy ART network for training 
results using half-minute and one-minute occupancy patterns for ρ=0.8 and ρ=0.95, and 

PF=2 
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Figure 58: DR-FAR performance envelopes of the Fuzzy ART network for training 
results using half-minute and one-minute speed patterns for ρ=0.8 and ρ=0.95, and PF=2 
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Figure 59: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using half-minute and one-minute occupancy patterns for ρ=0.8 and ρ=0.95, and PF=2 
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Figure 60: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using half-minute and one-minute speed patterns for ρ=0.8 and ρ=0.95, and PF=2 
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Figure 61: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using half-minute and one-minute occupancy-speed patterns for ρ=0.8 and ρ=0.95, and 

PF=2 
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2.15.4 The Effect of the Traffic Parameter 

Another important factor that is likely to affect the performance of the ANN-based 

incident detection algorithms is the type of traffic parameter used for representation of 

traffic conditions.  In the application of Fuzzy ART network traffic conditions were 

portrayed in three different forms using occupancy, speed, and a combination of the two.  

To investigate the effect of the type of traffic parameter on the algorithm performance all 

other factors were held constant; i.e. the temporal pattern size was set to one-minute, the 

vigilance parameter to 0.95, and the persistence factor to two.  Figure 62 exhibits the 

different performance envelopes obtained from occupancy, speed, and occupancy-speed 

patterns using training results.  The figure shows clearly that significant improvement in 

the performance was achieved by using speed patterns rather than occupancy patterns.  

This indicates that Fuzzy ART algorithm was capable of differentiating clusters of 

incident speed patterns from incident-like speed patterns more than those of incident 

occupancy patterns from incident-like occupancy patterns.  In other words, the effect of 

the incidents on speed patterns is more discernible from that on occupancy patterns. 

 

However, when occupancy and speed are both used to represent traffic conditions, their 

patterns further improved the Fuzzy ART performance as shown in Figure 62.  The 

combination of both occupancy and speed into one pattern is more likely to add more 

information that will make traffic patterns associated with incidents more distinguishable.  

The same observation can be supported by Figure 63, which shows the comparative 

evaluation of the performance envelopes for each traffic parameter using testing results.  
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As highlighted in earlier sections, the overall performance of the algorithm slightly drops 

at testing results when compared with training results. 
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Figure 62: DR-FAR performance envelopes of the Fuzzy ART network for training 
results using one-minute patterns for ρ=0.95 and PF=2 
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Figure 63: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using one-minute patterns for ρ=0.95 and PF=2 
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2.15.5 Comparative Evaluation 

In this section the results of the Fuzzy ART network were compared with the results of 

two traditional incident detection algorithms, namely California #7 and #8.  The two 

California algorithms are a part of the original work done in incident detection on 

freeways.  California #7 is a simplified version that compares occupancy at two 

consecutive stations.  Version #8, however, is more complicated due to the incorporation 

of a mechanism to suppress the false alarms produced by compression waves through the 

use of a persistence period.  Both versions require calibration with incident and loop data 

to select the optimum set of threshold values.  The performance of the two California 

algorithms was evaluated using the DR-FAR performance envelopes for various 

combinations of threshold values. 

 

For California algorithm #7 the calibration process entailed attempting as many 

combinations of values for the three thresholds as possible.  Each threshold can take on 

values between 0% and 100%.  The calibration process was completed in two steps.  First 

a wide range of values with large increments was applied using the values in Table 6.  

The first step resulted in a total of 330 different combinations or runs.  Each run was 

associated with a detection rate and a false alarm rate.  The performance envelope was 

plotted for those runs that maximized the ratio between detection rate and false alarm 

rate.  This ratio was used to determine the envelope that maximizes the performance of 

the algorithm.  To further improve the performance envelope a narrower range of 

threshold values was selected based on the range of threshold values associated with the 
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first performance envelope.  This led to the execution of step 2, which involved using a 

2% increment in each threshold as shown in Table 7.  The resulting performance 

envelope improved after step 2 and will be used for comparative evaluation. 

Table 6: Range of threshold values for calibration of California algorithm #7 – step 1 
 T1 (0 to 100)% T2 (0 to 100)% T3 (0 to 100)% 

Minimum 5 30 10 
Maximum 30 80 30 
Increment 5 5 5 

 

Table 7: Range of threshold values for calibration of California algorithm #7 – step 2 
 T1 (0 to 100)% T2 (0 to 100)% T3 (0 to 100)% 

Minimum 5 30 15 
Maximum 15 40 25 
Increment 2 2 2 

 

The calibration of California algorithm #8 was similar to that of #7, except that it has 5 

thresholds instead of 3.  The calibration was performed in two steps as shown in Table 8 

and Table 9.  The initial threshold ranges were selected such that they accommodate the 

values recommended by the calibration of the algorithm in the final FHWA report (Payne 

et al., 1976).  The second step was also selected based on the results of the first step. 

Table 8: Range of threshold values for calibration of California algorithm #8 – step 1 
 T1 

(0 to 100)% 
T2 

(-100 to 100)% 
T3 

(0 to 100)% 
T4 

(0 to 100)% 
T5 

(0 to 100)% 
Minimum 5 -40 20 10 25 
Maximum 35 -20 60 30 35 
Increment 10 10 10 10 10 

 

Table 9: Range of threshold values for calibration of California algorithm #8 – step 2 
 T1 

(0 to 100)% 
T2 

(-100 to 100)% 
T3 

(0 to 100)% 
T4 

(0 to 100)% 
T5 

(0 to 100)% 
Minimum 5 -20 45 15 20 
Maximum 5 -20 55 25 30 
Increment 1 1 2 2 2 
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Comparison between the performance envelopes of Fuzzy ART and California 

algorithms #7 and  #8 is shown in Figure 64.  The figure shows that Fuzzy ART has 

outperformed both versions of California algorithms, which showed very similar 

performance.  The comparison was based on PF=2 and ρ = 0.95.  The best performance 

was achieved by Fuzzy ART algorithm with occupancy-speed patterns, followed by that 

with speed patterns.  The performance of Fuzzy ART algorithm with occupancy patterns 

matched closely that of both California #7 and #8.  It should be noted here that California 

algorithms are also occupancy-based.  This supports the limitation of relying only on 

occupancy measurements for freeway incident detection. 
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Figure 64: Comparison between the performance of Fuzzy ART and California 
algorithms versions #7 and #8 
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3 CONCLUSIONS AND RECOMMENDATIONS 

This report presented the results of training and testing the Fuzzy ART network for the 

application of automatic freeway incident detection.  The performance envelopes of the 

DR-FAR relationship were the basis for assessing the performance of the algorithm.  For 

performance improvement, a persistence period and a persistence factor were introduced 

to reduce the false alarm rate.  The effect of the persistence factor was not significant for 

values in the range between 1 and 4.  The performance was evaluated under a variety of 

scenarios to address the impact of some factors on the overall algorithm performance.  

Those factors included the vigilance parameter, the temporal pattern size, and the type of 

traffic parameter.  The results showed that the performance could be significantly 

improved with increasing the value of the vigilance parameter (ρ=0.95) and the temporal 

pattern size.  Also, results based on speed patterns outperformed those based on 

occupancy patterns.  However, the combination of occupancy and speed has resulted in 

the highest performance.  Comparative evaluation between the Fuzzy ART algorithm and 

California algorithms version 7 and 8 was presented. 

 

The results of this research study have demonstrated the potential of applying the 

artificial neural networks for automated detection of incidents on freeways using the 

existing loop detector data.  This was the primary objective of the study.  To accomplish 

this objective, the Fuzzy ART algorithm (based on unsupervised learning) was trained to 

detect lane-blocking incidents using real life loop detector data collected on the central 

corridor of I-4 in Orange County.  The inputs to the neural network were derived from 

the 30-second station averages of occupancy, speed, and volume.  All loop data 
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underwent a process of filtering and smoothing to reduce abnormalities and random 

traffic fluctuations.  Also, incident data was checked to verify the time and location. 

 

The performance of the Fuzzy ART algorithm showed constant increase in detection rate 

up to nearly 88% at relatively low values of FAR.  The temporal pattern size and the type 

of pattern affected the performance of the Fuzzy ART algorithm.  The results 

demonstrated that the incident detection performance improves as the temporal size 

increases.  For Fuzzy ART algorithm, one-minute patterns led to better performance than 

30-second patterns.  This can be attributed to the extra information contained in the 

pattern as its size increases, and therefore, traffic patterns associated with incidents 

become more discernible from similar incident-free patterns.  For implementation of the 

Fuzzy ART algorithm a three-minute persistence period was introduced, along with a 

persistence factor, to reduce the false alarm rate.  Better performances were obtained for a 

vigilance parameter of 0.95. 

 

An interesting finding is that when compared with occupancy patterns, speed patterns 

constantly produce better results.  This is likely to indicate that incidents can be detected 

with speed patterns better than occupancy patterns.  The results of the Fuzzy ART 

network suggest that the combination of occupancy and speed in the representation of 

traffic pattern lead to a better performance.  The additional information is more likely to 

make incident patterns more distinguishable from incident-like patterns.  This also 

supports the finding that better results are achieved when the temporal size of the traffic 

pattern is increased. 
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Figure 65: DR-FAR performance envelopes of the Fuzzy ART network for training 
results using half-minute occupancy patterns and ρ = 0.80 
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Figure 66: The DR-FAR performance envelopes of the Fuzzy ART network for training 
results using one-minute occupancy patterns and ρ = 0.80 
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Figure 67: DR-FAR performance envelopes of the Fuzzy ART network for training 
results using half-minute occupancy patterns and ρ = 0.90 
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Figure 68: DR-FAR performance envelopes of the Fuzzy ART network for training 
results using one-minute occupancy patterns and ρ = 0.90 
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Figure 69: DR-FAR performance envelopes of the Fuzzy ART network for training 
results using half-minute occupancy patterns and ρ = 0.95 
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Figure 70: DR-FAR performance envelopes of the Fuzzy ART network for training 
results using one-minute occupancy patterns and ρ = 0.95 
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Figure 71: DR-FAR performance envelopes of the Fuzzy ART network for training 
results using half-minute speed patterns and ρ = 0.80 
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Figure 72: DR-FAR performance envelopes of the Fuzzy ART network for training 
results using one-minute speed patterns and ρ = 0.80 



 111

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
FAR (%)

D
R

 (%
)

PF =1
PF =2
PF =3
PF =4
PF =5
PF =6

 

Figure 73: DR-FAR performance envelopes of the Fuzzy ART network for training 
results using half-minute speed patterns and ρ = 0.90 
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Figure 74: DR-FAR performance envelopes of the Fuzzy ART network for training 
results using one-minute speed patterns and ρ = 0.90 
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Figure 75: DR-FAR performance envelopes of the Fuzzy ART network for training 
results using half-minute speed patterns and ρ = 0.95 
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Figure 76: DR-FAR performance envelopes of the Fuzzy ART network for training 
results using one-minute speed patterns and ρ = 0.95 
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Figure 77: DR-FAR performance envelopes of the Fuzzy ART network for training 
results using half-minute occupancy-speed patterns and ρ = 0.95 
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Figure 78: DR-FAR performance envelopes of the Fuzzy ART network for training 
results using one-minute occupancy-speed patterns and ρ = 0.95 
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Figure 79: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using half-minute occupancy patterns and ρ = 0.80 
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Figure 80: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using half-minute occupancy patterns and ρ = 0.90 
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Figure 81: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using half-minute occupancy patterns and ρ = 0.95 
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Figure 82: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using half-minute speed patterns and ρ = 0.80 
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Figure 83: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using half-minute speed patterns and ρ = 0.90 
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Figure 84: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using half-minute speed patterns and ρ = 0.95 
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Figure 85: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using half-minute occupancy-speed patterns and ρ = 0.80 
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Figure 86: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using half-minute occupancy-speed patterns and ρ = 0.90 
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Figure 87: DR-FAR performance envelopes of the Fuzzy ART network for testing results 
using half-minute occupancy-speed patterns and ρ = 0.95 


	I
	INTRODUCTION
	INCIDENT DETECTION ON I-4
	INTRODUCTION
	DATA COLLECTION
	Loop Detector Data
	Study Site
	Loop Detector Data Collection
	Methodology of the Data Manipulation Process
	Filtering and Smoothing Loop Detector Data
	Filtering Occupancy and Volume Data
	Filtering Speed Data

	Smoothing Loop Detector Data
	A New Set of Loop Detector Data
	Data Conversion Process
	Conversion of text files to database files
	Querying the database files


	Incident Data
	The 1993 and 1994 Incident Data Set
	Incident Data Collection
	Filtering the Incident Data Set
	Lane-Blocking Incident Characteristics
	Characteristics of the Selected Incident Set

	The New Incident Data Set


	INCIDENT DETECTION MODULE
	Software Conversion
	Real Time Loop Detector Data
	‘Setup’ option
	‘Loop Data’ option


	STUDY AREA
	THE FUZZY ART NETWORK
	Topology of the Fuzzy ART Network
	The Fuzzy ART Algorithm
	The Fuzzy ART Module
	Traffic Pattern Generation
	Algorithm Execution


	METHODOLOGY
	TRAINING AND TESTING DATA SETS
	TRAINING THE FUZZY ART NETWORK
	Input to the Fuzzy ART Network
	Output of the Fuzzy ART Network
	The Selected Fuzzy ART Network Topology

	SELECTION OF INCIDENT CLUSTERS
	DESIGN FACTORS OF THE FUZZY ART NETWORK
	TESTING THE FUZZY ART NETWORK
	PERFORMANCE MEASURES
	PERSISTENCE PERIOD AND PERSISTENCE FACTOR
	CALCULATION OF DR AND FAR
	ANALYSIS OF RESULTS
	The Effect of the Persistence Factor
	The Effect of the Vigilance Parameter (()
	The Effect of the Temporal Pattern Size
	The Effect of the Traffic Parameter
	Comparative Evaluation


	CONCLUSIONS AND RECOMMENDATIONS

